予習碓認プリント

学年： \qquad学籍番号： \qquad名前： \qquad

- 熱取得とは？
- 熱損失とは？
- 暖房時の熱取得を3つ挙げて下さい。

1）
2 ）
3 ）
－暖房時の熱損失を 4 つ挙げて下さい。
1 ）
2 ）
3 ）
4 ）
－熱損失係数とは？
※予習の段階に比べて，授業を聞き終わった段階では，何がわかりましたか？

2 室温と熱負荷（教科書 pp．44～51）

2 室内外への熱の出入り（教科書 pp．44～47）

相当外気温度

\qquad
\qquad ］$=$ 〔 \qquad ］+ \qquad ］

〔外壁の相当放射温度〕 $=$（〔外壁の日射吸収率〕 \times 〔屋外面の全日射量〕－〔外壁の放射率〕 \times 〔屋外面の夜間放射量〕）／〔屋外表面総合熱伝達率〕
$\rightarrow \quad q_{W}=K_{W} \cdot A_{W} \cdot\left(\theta_{R}-S A T_{W}\right)$
$S A T_{W}=\theta_{O}+\Delta \theta_{W}$

$$
\Delta \theta_{W}=\frac{a_{W} \cdot I-\varepsilon_{W} \cdot R_{N}}{\alpha_{O}}
$$

ここで，
q_{W} ：外壁貫流熱損失［W］
K_{W} ：外壁熱貫流率 $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
A_{W} ：外壁面積［m²］
θ_{R} ：室温［ $\left.{ }^{\circ} \mathrm{C}\right](\theta$ ：シータ）
$S A T_{W}$ ：外壁の相当外気温度 $\left[{ }^{\circ} \mathrm{C}\right] \rightarrow$ 日射の強さに応じて，外気温が仮想的に上昇した と考えた温度
θ_{O} ：外気温 $\left[{ }^{\circ} \mathrm{C}\right]$
$\Delta \theta_{W}$ ：外壁の相当放射温度［ $\left.{ }^{\circ} \mathrm{C}\right]$
a_{W} ：外壁の日射吸収率［単位なし］
I ：屋外面の全日射量 $\left[\mathrm{W} / \mathrm{m}^{2}\right]$
ε_{W} ：外壁の放射率［単位なし］
R_{N} ：屋外面の夜間放射量 $\left[\mathrm{W} / \mathrm{m}^{2}\right] \rightarrow$ 教科書 p .76 を参照
α_{O} ：屋外表面総合熱伝達率 $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
\rightarrow 総合熱伝達率 $=$ 対流熱伝達率 + 放射熱伝達率
であるので，屋外の風が変化すると対流熱伝達率も変化し，その結果，相当外気温にも影響する。
※窓の場合も同様

非定常状態の熱平衡と室温

－室温変化 \rightarrow 家具類や周壁の温度も変化 \rightarrow 家具類や周壁への吸熱が起きる \rightarrow 定常状態になると吸熱量はゼロに

- 室熱容量：室温を 1 K 上昇させるために必要な総吸熱量
- 非定常状態では，この吸熱の効果も考慮する必要がある。 \rightarrow 教科書 pp．49～50 も参照 \rightarrow 詳しく知りたい人は，前回の補足プリント p． 19 に載せた参考文献などを参照

建築環境工学 I（第4回目）［火曜日•10：20～11：50•小講義室3］
2012． 05.01
環境共生学部•居住環境学科准教授•辻原万規彦

学年： \qquad学籍番号： \qquad名前： \qquad

奥行き 8 m ，幅 10 m ，高さ 5 m の建物があり，それぞれの壁の熱貫流率が $1.5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ ，換気回数
0.5 回／h の時，総合熱貫流率と熱損失係数を求めよ。

なお，換気回数と空気の比熱については，教科書 p． 47 を参照。

