建築環境工学 I（第 4 回目）［火曜日•10：20～11：50•小講義室3］	
	2013．04．30 環境共生学部•居住環境学科 准教授•辻原万規彦

予習碓認プリント

学年： \qquad学籍番号： \qquad名前： \qquad

- 熱取得とは？
- 熱損失とは？
- 暖房時の熱取得を3つ挙げて下さい。

1）
2 ）
3 ）
－暖房時の熱損失を 4 つ挙げて下さい。
1 ）
2 ）
3 ）
4 ）
－熱損失係数とは？総合熱貫流率との関係は？
※予習の段階に比べて，授業を聞き終わった段階では，何がわかりましたか？

2 室温と熱負荷（教科書 pp．44～51）

2 室内外への熱の出入り（教科書 pp．44～47）

相当外気温度

\qquad
\qquad ］$=$ 〔 \qquad ］+ 〔 \qquad ］

〔外壁の相当放射温度〕＝（〔外壁の日射吸収率〕×〔屋外面の全日射量〕－〔外壁の放射率〕 \times 〔屋外面の夜間放射量〕）／〔屋外表面総合熱伝達率〕
$\rightarrow \quad q_{W}=K_{W} \cdot A_{W} \cdot\left(\theta_{R}-S A T_{W}\right)$

$$
S A T_{W}=\theta_{O}+\Delta \theta_{W}
$$

$$
\Delta \theta_{W}=\frac{a_{W} \cdot I-\varepsilon_{W} \cdot R_{N}}{\alpha_{O}}
$$

ここで，
q_{W} ：外壁貫流熱損失［W］
K_{W} ：外壁熱貫流率 $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
A_{W} ：外壁面積［m²］
θ_{R} ：室温［ $\left.{ }^{\circ} \mathrm{C}\right] ~(\theta: シ ー タ) ~$
$S A T_{W}$ ：外壁の相当外気温度 $\left[{ }^{\circ} \mathrm{C}\right] \rightarrow$ 日射の強さに応じて，外気温が仮想的に上昇した と考えた温度
θ_{O} ：外気温 $\left[{ }^{\circ} \mathrm{C}\right]$
$\Delta \theta_{W}$ ：外壁の相当放射温度［ $\left.{ }^{\circ} \mathrm{C}\right]$
a_{W} ：外壁の日射吸収率［単位なし］
I ：屋外面の全日射量［W／m²］
ε_{W} ：外壁の放射率［単位なし］
R_{N} ：屋外面の夜間放射量 $\left[\mathrm{W} / \mathrm{m}^{2}\right] \rightarrow$ 教科書 p .76 を参照
α_{O} ：屋外表面総合熱伝達率 $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
\rightarrow 総合熱伝達率 $=$ 対流熱伝達率＋放射熱伝達率
であるので，屋外の風が変化すると対流熱伝達率も変化し，その結果，相当外気温にも影響する。
※窓の場合も同様

非定常状態の熱平衡と室温

－室温変化 \rightarrow 家具類や周壁の温度も変化 \rightarrow 家具類や周壁への吸熱が起きる \rightarrow 定常状態になると吸熱量はゼロに

- 室熱容量：室温を 1 K 上昇させるために必要な総吸熱量
- 非定常状態では，この吸熱の効果も考慮する必要がある。 \rightarrow 教科書 pp．49～50 も参照 \rightarrow 詳しく知りたい人は，前回の補足プリント p． 19 に載せた参考文献などを参照

熱損失係数の計算方法

熱損失係数の計算方法は，
「住宅に係るエネルギーの使用の合理化に関する建築主等及び特定建築物の所有者の判断の基準」（平成 18 年経済産業省•国土交通省告示第 3 号 平成 21 年経済産業省•国土交通省告示第 1 号一部改正）に提示されている。詳細は，この告示を参照のこと。

$$
Q=\frac{\sum A_{i} \cdot U_{i} \cdot H_{i}+\sum\left(L_{F i} \cdot U_{L i} \cdot H_{i}+A_{F i} \cdot U_{F i}\right)+0.35 \cdot n \cdot B}{S}
$$

ここで，
Q ：熱損失係数 $\left[W /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$（温度差 $1{ }^{\circ} \mathrm{C}$ の時に，述べ床面積 $1 \mathrm{~m}^{2}$ 当たり 1 時間に失われる熱量。値が小さいほど熱が逃げにくい，熱的に性能の良い建物ということになる。）
A_{i} ：外気または外気に通じる床裏，小屋裏もしくは天井裏に接する第 i 部位の面積［m²］
$U_{i}:$ 第 i 部位の熱貫流率 $\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
$H_{i}:$ 第 i 部位などの外周の接する外気などの区分に応じた係数（ 1.0 もしくは 0.7 ）
$L_{F i}$ ：第 i 土間床などの外周の長さ $[\mathrm{m}]$
$U_{F i}$ ：第 i 土間床などの外周の熱貫流率 $\left[W /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
$A_{F i}:$ 第 i 土間床などの中央部の面積［m²］
$U_{F i}:$ 第 i 土間床などの中央部の熱貫流率 $\left[W /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
$n:$ 換気回数［回］
$B:$ 住宅の気積 $\left[\mathrm{m}^{3}\right]$
$S:$ 住宅の床面積の合計［m²］

建築環境工学 I（第4回目）［火曜日•10：20～11：50•小講義室3］
2013． 04.30
環境共生学部•居住環境学科准教授•辻原万規彦
Q 値は，次に掲げる表の基準値以下であることが求められる。

地域の区分	都道府県（例）	Q 値の基準値
I	北海道	1.6
II	青森県，岩手県，秋田県	1.9
III	宮城県，山形県，福島県，栃木県，新潟県，長野県	2.4
IV	上記と下記以外の県	2.7
V	宮崎県，鹿児島県	2.7
VI	沖縄県	3.7

【教科書の訂正】

p． 47 の「問題 2 」には，訂正があるので，出版社による正誤表を参照のこと。 http：／／www．gakugei－pub．jp／mokuroku／book／ISBN978－4－7615－2476－0．htm

建築環境工学 I（第 4 回目）［火曜日•10：20～11：50•小講義室3］	
	2013．04．30 環境共生学部•居住環境学科 准教授•辻原万規彦

学年： \qquad学籍番号： \qquad名前： \qquad

奥行き 8 m ，幅 10 m ，高さ 5 m の建物があり，それぞれの壁の熱貫流率が $1.5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ ，換気回数
0.5 回／h の時，総合熱貫流率と熱損失係数を求めよ。

なお，上面（屋根）と下面（床）からも熱が逃げるとして考え，換気回数と空気の比熱につい ては，教科書 p． 47 を参照。

