アーケード内部の温熱環境に関する調査研究
その２ 温度分布特性

1. はじめに
アーケード街は概して都市の中心部に存在し、都市内公共空間を構成する重要な要素であり、都市のアメニティ向上に寄与すると考えられる。しかしながらアーケードを対象とした研究は、その内部の温熱環境に関するものに限らず、アストリウムなどを対象とした研究と異なり非常に少ない。したがって、現状では内部の温熱環境についても十分なデータが蓄積されていない。そこで本調査研究ではこれらの基礎データを収集し、アーケードの将来像を模索する手助けとすることを目的とした。

このような背景を踏まえ、本稿ではアーケード内部の温熱環境について把握するために、実測により得られたデータを、温度分布の特性という視点から分析を加える。

2. データの収集
2.1 気温の測定における補正について
本調査研究において気温の測定には、直径0.08mmの鋼－コンスタンタンによる丁型濃縮熱電対を用いている。この場合、熱電対は日射の影響を受けるため、補正を行う必要があり、村上らは以下のような処理を行っている。熱電対の裸線部分の長さが5mm以下のものとそれ以上のものに振り分け、次式に従い補正値を求め、測定値に加えることにより補正を行う。

5mm以下: \( \Delta \theta = 1.45 \times 10^{-3} \times (J - 64.5) \)
5mm以上: \( \Delta \theta = 7.32 \times 10^{-4} \times (J - 64.5) \)

ここで、J: 日射量（W/m²）である。

ところで本調査研究における実測では、アーケードにおいてアルベドメーターを用いて全天日射量を測定しており、夏季におけるその結果を図1に示す。図からわかるように、アーケード内部の熱電対が受ける日射は夏季においてもたかかに160W/m²程度であり、この時補正値は裸線が5mm以下であるときと0.14℃、5mm以上であるときと0.06℃である。また、日射は直接熱電対に当たるのではなく、その前に一旦アーケードの屋根を通過している。したがって熱電対の場所以外の日射量の偏りは無視できるものと考えられる。よって、本稿ではこれらの影響を無視できると考え、日射による補正を行わないこととする。

2.2 グラフなどで表示した数値について
また後述のグラフなどで、例えば11:00の値として示してあるものは、10:50、11:00及び11:10のように前後の時点での数値とその時点での数値の平均をとっている。これはその時点のないデータを探用することを避けるためである。
なお後述のグラフでは、午前、午後及び夜間のデータとして、一般的人が商店街を利用する時間帯を基準として、11:00、15:00及び19:00のデータを探用することとした。

3. 夏季の温度分布特性
地点2における8月11日（金）の温度分布の様子を図2に示す。また、同日の各地点の温度分布の様子を一つにまとめたものを図3に示す。

夏季におけるアーケード内部の温度分布については、以下のよう
にいくつかの特徴的な点が見られた。
1）地点1から地点3においては、地表面から11mと12mの
間で大きな温度差が見られる。
これは日射によって上層部の空気が温められているにもかわらず、空気流動が小さいため下層部では非常に高温とな
っていると考えられる。なお、上層部における測定期間中
の最高気温は、地点1の8月9日（水）11:00の47.2℃で
あった。
特に最も温度差が大きい地点1については、アーケードの
入口に設置されているアーチ状の木枠に相当する部分が、ア
ーケード内部の空間への空気の流入を妨げ、空気の流動が少

Investigation of the Thermal Environment in the Arcade
Part 2 Temperature Distribution

KAWAKAMI Kenya, TUJHARA Makihiko and NAKAMURA Yasuto

−277−
3) 午前中にはアーケード内部の比較的上層部分が先に温められ、午後になってから下層部分の温度も上昇する。

地点1から地点3においては、午前の11：00の温度分布よりも午前の11：00の温度分布の方が上下で温度差が大きい。これはアーケード内部の上層部分が最も早くに温められることを示している。

4) 地点2においては、地面からの高さが同じでも北西側の気温が先に上昇する。

南東側は午前中築物のかげに隠れて直射日光が当たらないのに対し、北西側は直射日光が当たり、同じ地面から8mの温度でも北西側の方が高くになっていると考えられる。

また同じ高さ8mの温度でも、北西側と南東側が中央よりも、午前・午後・夜間共に低くなっているとは、その近傍の場所が日射を受けたことの影響とみることができる。即ち日射を受けたことによって近傍の気温が上昇したと解される。
5) 19:00になるとどの地点でも、大きな温度差は見られな
い。しかししながら、地点2においては地表面からの高さ8mの
温度が中央よりも、北西側及び南東側の方が高く、な
る。中央では、アーケードの屋根面での冷却が盛んであり、
その結果温度差がほとんど見られなくなっていると考えられ
る。それに対し、北西側及び南東側では壁面に近く温度が
下がりにくいためであると考えられる。

4. 冬季の温度分布特性

冬季の実測では、冬季の実測の反省を踏まえ、データロ
ガーの測定点数に余裕のある地点1と地点3において、地表
面からの高さ11.5mと11.75mの温度の測定点を新たに設置し
た。これは冬季の測定では最上層部の温度経時変が非常に激
しいことが判明し、より細かく測定が必要であると思われ
たからである。

地点2における1月11日（木）の温度分布の様子を図6に
示す。また、同日の各地点の温度分布の様子を一つにまとめ
たものを図7に示す。

冬季におけるアーケード内部の温度分布には、以下のような
いくつかの特徴的な点が見られた。

1) 全体的な傾向として、アーケード内部の下層部と上層部
の気温の差はそれほど大きくはない。それ故図8に示すように、アーケード内部において観測さ
れる冬季の日射量が、最も大きくても冬季のそれの約2分の
1程度であることが大きな原因であると考えられる。即ち日
射量が少ないために、上層部の温度が上昇せず、全体として
大きな温度差が生じないと言われる。

2) 地点1と地点3の午前中については、最上層部では若干
急的な温度急増が見られる。

前述のように、全体的な傾向としては、上下で温度差は生
じてはいないが、地点1と3の午前中においては夏同様、
11mから、特に11.75mと12mの間で比較的大きな温度差が見
られる。これは、日射による影響であると考えられる。ただ
し、地点4においてはそのような温度差は見られない。これ
は前述のように空気が流れが大きいと思われる屋根の構造に
よるものと考えられる。

3) 午後、あるいは夜間のうち、午後の温度が最も低い。

夏季では、11:00、15:00並びに19:00のうち、19:00の気温
が最も低かったが、冬季では11:00の気温が最も低くなって
いた。冬季では日の出が早くて、しかも日の出に伴う急激な日
射量が増加するため気温も急激に上昇すると考えられる。
したがって、11:00の半前で日の出からかなりの時間が経過
していることもあり、気温はかなり上昇している。それに対
し、冬季では日の出が比較的遅いため、11:00の半前でそ
れほど多くの日射を得ていないためであると考えられる。

4) 地点2では、最上層部の12mではなく、11mの気温が高
くなっている現象が観測された。

地点2では、地表面から11mの気温が12mのそれに比べ約
1℃高くなっている現象が観測された。これは既に報告さ
れているアトリウムの例81でも見られる。アーケードの屋根
の外部の気温が内部の気温に比べ低いため、生じる現象である
と考えられる。この現象が地点2のみで見られた理由は、ア
ーケードを取り巻く周辺の建物によってそれぞれの地点で日
射の当たり方や異なるためと考えられるが、詳細については
今後の調査が必要であると思われる。

5) 夜間に上層部の気温よりも下層部の気温が高くなる現
象が観測された。

それほど大きな温度差ではないが、図9により示されること
のように夜間に上層部の気温の方が下層部の気温に比べて低
くなっていることがあった。これは夜間ではアーケードの外部
の気温が低く、上層部が冷やされるのに対し、下層部では暖
房などの排熱が生じているためと考えられる。

5. まとめ

本稿では、実測によって得られたデータに基づき、アーケ
ード内部の温度分布の特性について分析を加え、夏季並び
に冬季においてそれぞれ特徴的な点が見いだされたが、夏季
において上下の温度差が非常に大きい点が注目される。これ
は、アーケード内部の空気流動が大きく影響を与えていると
考えられ、今後アーケード内部の空気流動についての詳細な

-279-
図6 96冬季・地点2
断面方向温度分布の変化（1.11）

図7 96冬季・地点2
断面方向温度分布の変化（1.11）

図8 冬季における日照量の時間変化

図9 96冬季・地点2
上層部と下層部の温度の逆転現象

＜参考文献＞
1）中村泰人・平岡久司・西村浩一：市街地空間における気温分布特性に関する実験的研究，日本建築学会計画系論文報告集第364号，pp.48〜56，1986.6。
2）久保田克己・絵内正道・苑谷登：自然温度型アトリウムの温度環境，その3 長期実測結果から見た光井戸型アトリウムの特性，日本建築学会季刊（北海道）学術講演会集，pp.109〜110，1995.8。

* 1 神村鉄工株式会社
* 2 京都大学大学院修士課程
* 3 京都大学大学院工学研究科教授・工博

Kamimura Iron Works Co. Ltd.
Graduate School , Kyoto Univ.
Prof., Kyoto Univ., Dr.Eng.