令和7年度 熊本県立大学 環境共生学部 環境共生学科 環境資源学専攻 私費外国人留学生選抜 物理 解答例

問題I

問1 小球が最高点では、速度の鉛直成分が0となる。

$$0 = v \sin 30^{\circ} - gt$$

$$t = (39.2 \times 0.5)/9.8 = 2 \text{ s}$$

$$h = v\sin 30t - 0.5 gt^2 = 19.6 \times 2 - 0.5 \times 9.8 \times 2^2 = 19.6 m$$

間 2 木材丸太の体積は $1 \, \mathrm{m}^3$ とすると、水面下の部分の体積 V は

$$V = (1 \times 4.0 \times 10^{2})/(1.0 \times 10^{3}) = 0.4 \text{ m}^{3}$$

水面より上の部分の体積= 0.6 m3

問3 全体の温度が 20℃から 40℃になる間に、容器と水が吸収した熱量Qは

$$Q=(40-20)\times(140+4.2\times100)=20\times560 J$$

Qは金属球が失った熱量と等しいため、 $Q=280\times(200-40)$ c

よって、
$$c = 0.25 \text{ J/(g \cdot K)}$$

問4 クーロンの法則により

小球Aと小球B間に働く静電気力Fは

$$F = k \frac{q_A q_B}{r^2} = 9.0 \times 10^9 \times \frac{2.0 \times 10^{-7} \times 4.0 \times 10^{-7}}{2^2} = 1.8 \times 10^{-4} \text{ N}$$

問5 コンデンサーに蓄えられる静電エネルギーは次の式で求められる

$$U = \frac{1}{2}CV^2 = \frac{1}{2} \times 10 \times 10^{-6} \times 100^2 = 5.0 \times 10^{-2} \text{ J}$$

電気量 Q=CVにより

$$Q = CV = 10 \times 10^{-6} \times 100 = 1.0 \times 10^{-3} \text{ C}$$

問題Ⅱ

気体の定積比熱 $C_V = \frac{3}{2}nR$; 気体の定圧比熱 $C_p = \frac{5}{2}nR$

(1) 状態 A、B、C、D のそれぞれの状態方程式を立てると,

$$pV$$
 = nRT , $2pV$ = nRT_B , $4pV$ = nRT_C , $2pV$ = nRT_D がある。これらを比較すると, T_B = $2T$ [K] , T_C = $4T$ [K] , T_D = $2T$ [K]

(2) $A \rightarrow B$ (定積変化), $B \rightarrow C$ (定圧変化) で気体に加えられた熱量を Q_{AB} , Q_{BC} とすると,

$$Q_{AB} = \frac{3}{2} nR(T_B - T_A) = \frac{3}{2} nR(2T - T) = \frac{3}{2} nRT$$
 $Q_{BC} = \frac{5}{2} nR(T_C - T_B) = \frac{5}{2} nR(4T - 2T) = 5nRT$
がある。よって、 $Q_1 = Q_{AB} + Q_{BC} = \frac{13}{2} nRT$ [J]

(3) $C \rightarrow D$ (定積変化), $D \rightarrow A$ (定圧変化) で気体から奪った熱量を Q_{CD} , Q_{DA} とすると,

$$Q_{CD} = -\frac{3}{2}nR(T_D - T_C) = -\frac{3}{2}nR(2T - 4T) = 3nRT$$
 $Q_{DA} = -\frac{5}{2}nR(T_A - T_D) = -\frac{5}{2}nR(T - 2T) = \frac{5}{2}nRT$
がある。 よって, $Q_2 = Q_{CD} + Q_{DA} = \frac{11}{2}nRT$ [J]

(4) $A \rightarrow B$ (定積変化), $B \rightarrow C$ (定圧変化), $C \rightarrow D$ (定積変化), $D \rightarrow A$ (定圧変化) で気体が外部にした仕事を W_{AB} , W_{BC} , W_{CD} , W_{DA} とすると,

$$W_{AB}$$
=0, W_{BC} =2 $p(2V-V)$ =2 nRT , W_{CD} =0, W_{DA} = $p(V-2V)$ = - nRT がある。 よって, W' = W_{AB} + W_{CD} + W_{DA} + W_{AD} = nRT [J]

(5) この 1 サイクルで、吸収する熱は $A \rightarrow B \rightarrow C$ である。したがって、

$$e = \frac{W'}{Q_1} = \frac{nRT}{\frac{13}{2}nRT} = \frac{2}{13} = 0.15$$